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SUMMARY
The basic, still unanswered question about visual object representation is this: what specific
information is encoded by neural signals? Theorists have long predicted that neurons would
encode medial axis or skeletal object shape, yet recent studies reveal instead neural coding of
boundary or surface shape. Here, we addressed this theoretical/experimental disconnect, using
adaptive shape sampling to demonstrate for the first time explicit coding of medial axis shape in
high-level object cortex (macaque monkey inferotemporal cortex or IT). Our metric shape
analyses revealed a coding continuum, along which most neurons represent a configuration of
both medial axis and surface components. Thus IT response functions embody a rich basis set for
simultaneously representing skeletal and external shape of complex objects. This would be
especially useful for representing biological shapes, which are often characterized by both
complex, articulated skeletal structure and specific surface features.

INTRODUCTION
Object perception in humans and other primates depends on extensive neural processing in
the ventral pathway of visual cortex (Ungerledier and Mishkin, 1982; Felleman and Van
Essen, 1991; Kourtzi and Connor, 2011). Recent studies of ventral pathway processing
support the longstanding theory that objects are represented as spatial configurations of their
component parts (Tsunoda et al., 2001; Pasupathy and Connor, 2002; Brincat and Connor,
2004; Yamane et al., 2008). Theorists have often predicted that parts-based representation
would depend on skeletal shape, which is defined geometrically for each part by the axis of
radial symmetry, or medial axis (Blum, 1973; Marr and Nishihara, 1978; Biederman, 1987;
Burbeck and Pizer, 1995; Leyton, 2001; Kimia, 2003). Axial representation has strong
advantages for efficient, invariant shape coding, especially for biological shapes, and has
been used extensively in computer vision (Arcelli, Cordella and Leviadi, 1981; Pizer, Oliver
and Bloomberg, 1987; Leymarie and Levine, 1992; Rom and Medioni, 1993; Ogniewicz,
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1993; Zhu and Yuille, 1996; Zhu, 1999; Siddiqi et al., 1999; Pizer et al., 2003; Giblin and
Kimia, 2003; Sebastian, Klein and Kimia, 2004; Shokoufandeh et al.. 2006; Feldman and
Singh, 2006; DeMirci, Shokoufandeh and Dickinson, 2009). A number of psychophysical
results indicate a special role for medial axis structure in human object perception
(Johansson, 1973; Kovacs and Julesz, 1994; Siddiqi, Tresness and Kimia, 1996; Wang and
Burbeck, 1998; Siddiqi et al., 2001).

At the neural level, there is evidence for late-phase medial axis signals in primary visual
cortex (Lee et al., 1998), but there has been no demonstration of explicit medial axis
representation in the ventral pathway. While object responses have been extensively studied
in ventral pathway areas V4 and IT (Gross, Rocha-Miranda and Bender, 1972; Fujita et al.,
1992; Gallant, Braun and Van Essen, 1993; Kobatake and Tanaka, 1994; Janssen, Vogels
and Orban, 2000; Rollenhagen and Olson, 2000; Tsunoda et al., 2001; Baker, Behrmann and
Olson, 2002; Hung et al. 2005; Leopold, Bondar and Giese, 2006; Tsao et al., 2006;
Freiwald, Tsao and Livingstone, 2009; Freiwald and Tsao, 2010), there has been no way to
distinguish whether they are driven specifically by internal medial axis shape. In fact,
studies have consistently shown that ventral pathway neurons represent external boundary
shape fragments, either 2D contours or 3D surfaces, which require less computation to
derive from visual images (Pasupathy and Connor, 1999; Pasupathy and Connor, 2001;
Brincat and Connor, 2004; Yamane et al., 2008; Carlson et al., 2011).

Here, we addressed this theoretical/experimental gap by testing for medial axis coding
directly and comparing medial axis and surface coding. We studied 111 visually responsive
neurons recorded from central and anterior IT cortex (13-19 mm anterior to the inter-aural
line) in two awake, fixating monkeys. We used adaptive shape sampling algorithms
(Yamane et al., 2008; Carlson et al., 2011) for efficient exploration of neural responses in
the medial axis and surface domains. We used metric shape analyses to characterize neural
tuning in both domains. We found that many IT neurons explicitly encode medial axis
information, consistently responding to configurations of 1–12 axial components. We found
that this configural medial axis tuning exists on a continuum with surface tuning, and that
most cells are tuned for shape configurations combining both axial and surface elements.

RESULTS
Sampling shape responses in the axial and surface domains

We used an adaptive stimulus strategy guided by online neural response feedback.
Compared to random or systematic sampling, adaptive sampling makes it possible to study
much larger domains of more complex shapes, by focusing sampling on the most relevant
regions within those larger domains. To optimize sampling in both the axial and surface
domains, it was necessary to use two different adaptive paradigms simultaneously. This is
because complex surface shape and complex axial shape are geometrically exclusive.
Elaborate skeletal shape is only perceptible if surfaces are shrunk around the medial axes,
limiting surface complexity on a visible scale. Conversely, elaborate surface shape requires
surface expansion, which eliminates and/or obscures complex skeletal structure.

An example of the medial axis adaptive sampling paradigm is shown in the left column of
Figure 1A. The first generation of medial axis stimuli (M1.1) comprised 20 randomly
constructed shapes with 2–8 axial components that varied in orientation, curvature,
connectivity, and radius (see Experimental Procedures and Figure S1A for stimulus
generation details). These shapes were presented on a computer screen for 750 ms each, in
random order, at the center of gaze while the monkey performed a fixation task. 3D shape
was conveyed by shading cues combined with binocular disparity. The background color for
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each shape represents the average response (across 5 repetitions, see scale bar at bottom) of
a single neuron recorded from anterior IT.

The first generation of surface stimuli used to study this same neuron (Figure 1A, right
column, S1.1) comprised 20 random shapes constructed by deforming an ellipsoidal mesh
with multiple protrusions and indentations (see Experimental Procedures and Figure S1B for
stimulus generation details). This construction method produces much greater surface
complexity coupled with relatively simple axial structure. These shapes were presented in
the same manner, randomly interleaved with the axial stimuli.

Subsequent stimulus generations in both the axial and surface lineages comprised partially
morphed descendants of ancestor stimuli from previous generations. A variety of random
morphing procedures were applied in both domains (Figure S1). Selection of ancestor
stimuli from previous generations was probabilistically weighted toward higher responses.
This extended sampling toward higher response regions of shape space and promoted more
even sampling across the response range (compare first generations M1.1, S1.1 with fifth
generations M1.5, S1.5, and see Figure S1C).

After five generations of both axial and surface stimuli, we initiated another lineage in the
domain that produced higher maximum responses (based on a Wilcoxon rank-sum test of the
top ten responses in each domain). In this case, we initiated a new axial lineage, beginning
with a new generation of randomly constructed axial shapes (Figure 1B, M2.1). This
allowed us to test models in the highest response domain based on correlation between
independent lineages. The new lineage evolved in parallel with the original lineage, and the
procedure was terminated after obtaining 10 generations in the original medial axis lineage
and 10 in the new medial axis lineage, for a total of 400 medial axis stimuli and 100 surface
stimuli. Figure 1C illustrates the evolution of shapes in both axial lineages with partial
family trees. Both lineages succeeded in sampling across the neuron’s entire firing rate
range (Figure S1C). This neuron and others presented below exemplify how the axial shape
algorithm could generate stimuli with the complexity of natural objects like bipedal and
quadrupedal animal shapes.

Medial axis shape tuning
In previous studies, we have characterized complex shape tuning with linear/nonlinear
models fitted using search algorithms (Brincat and Connor, 2004, 2006; Yamane et al.,
2008). A drawback of this approach is the large number of free parameters required to
quantify complex shape and the consequent dangers of overfitting and instability. Here, we
avoided this problem by leveraging the shape information in high response stimuli that
evolved in each experiment. We searched these stimuli for shape templates that could
significantly predict response levels within and across lineages. The predicted response to a
given shape was based on its geometric similarity to the shape template model.

To verify convergent evolution between lineages, we tested whether a template model
derived from one lineage (the “source lineage”) could significantly predict responses in the
other, independent lineage (the “test lineage”). We found candidate medial axis templates by
first decomposing each shape in the source lineage into all possible connected substructures,
ranging from single axis components to the entire shape (e.g. Figure 2A). The template that
turned out to be optimal for this neuron is shown at the top. For this template (and for each
candidate template drawn from this and other high response shapes), we first tested
predictive power in the source lineage itself (Figure 2B). The predicted response to each
shape was a linear function of the geometric similarity (Figure 2, color scale; see
Experimental Procedures and Figure S2) of its closest matching substructure to the template.
We searched for templates with the highest correlation between predicted responses
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(similarity values) and observed responses (Figure 2B, inset numbers) across all shapes in
the source lineage. We identified 10 candidate templates (all with high correlations but also
constrained to be geometrically dissimilar) from the source lineage and then tested each of
these for its predictive power in the test lineage, again by measuring correlation between
predicted responses (template similarities) and observed responses (Figure 2C). We selected
the template with the greatest predictive power (highest correlation) in the test lineage. We
performed the same procedure with either lineage as the source of template models, for a
total of 20 candidate templates. In this case, the optimum template produced a highly
significant cross-lineage correlation between predicted and observed responses of 0.33 (p <
0.00002, corrected for 20 comparisons), showing that comparable medial axis structure
evolved in the two independent lineages.

While the above procedure served to confirm convergent evolution across lineages, a more
accurate template model can be obtained by simultaneously constraining the selection
process with both lineages. This was accomplished by measuring correlation between
predicted responses (template similarities) and observed responses across the entire dataset.
For this neuron, constraining with both lineages produced a closely related template (Figure
2D) with a comparable pattern of similarity values (Figure 2E,F). The significance of
models constrained by both lineages was confirmed with a two-stage cross-validation
procedure, in which both model selection and final goodness of fit were based on testing
against independent stimulus sets (see Experimental Procedures). The average cross-
validation correlation for this neuron was 0.59 (p < 0.05).

Combined medial axis and surface shape tuning
We found clear evidence for both medial axis and surface shape tuning in our neural sample.
Maximum response rates in the two domains were comparable (Figure 3A), and there were
no clusters of neurons with much higher axial shape responses (lower right corner) or much
higher surface shape responses (upper left corner). Moreover, we observed no anatomical
clustering of axial or surface tuning (Figure S3). The rank sum test of the 10 highest
response rates in each domain identified 40 neurons with significantly (p < 0.05) stronger
responses to medial axis stimuli and 29 neurons with significantly stronger responses to
surface stimuli (Figure 3B). All 66 neurons above the midpoint of the rank sum statistic
range (105) were studied with a second medial axis lineage.

Even among these neurons, our analyses showed examples of weak medial axis tuning and
strong surface shape tuning. For the cell depicted in Figure 4, maximum responses in the
two domains were similar (Figure 4A), although the rank sum test dictated a second lineage
in the medial axis domain (Figure 4B). The optimum medial axis template identified from a
single source lineage produced low, non-significant correlation (0.19, p > 0.05, corrected)
between predicted and observed response rates in the test lineage. In contrast, the optimum
surface shape template model identified from a single source lineage produced higher,
significant correlation (0.34, p < 0.05, corrected) in the test lineage. The optimum surface
template was identified using a similarity-based search analogous to the medial axis
analysis. Surface templates comprised 1-6 surface fragments, characterized in terms of their
object-relative positions, surface normal orientations, and principle surface curvatures, as in
our previous study of 3D surface shape representation (Yamane et al. 2008; see
Experimental Procedures and Figure S3). As in that study, we found here that cross-
prediction between lineages peaked at the 2-fragment complexity level, so we present 2-
fragment models in the analyses below. For this neuron, the optimum template constrained
by both lineages (Figure 4C) was a configuration of surface fragments (cyan and green)
positioned below and to the left of object center (cross). This template produced high
similarity values for high response stimuli and low similarity values for low response stimuli
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in both lineages (Figure 4D,E). The average cross-validation correlation for templates
constrained by both lineages was 0.41 (p < 0.05).

We tested the hypothesis that some IT neurons are tuned for both medial axis and surface
shape by fitting composite models based on optimum templates in both domains. (These
models were fit to the two medial axis lineages used to test 66 neurons, not to the surface
lineages for these neurons.) For the example cell depicted in Figure 5, maximum responses
were much higher in the medial axis domain (Figure 5A), and comparable axial structure
emerged in a second medial axis lineage (Figure 5B). However, composite models based on
optimum axial and surface templates (Figure 5C) revealed that this neuron was also sensitive
to surface shape. The composite model was a linear/nonlinear combination of axial and
surface tuning:

where Sm is the axial similarity score, Ss is the surface similarity score, a is the fitted relative
weight for the linear axial term, (1–a) is the weight for the surface term, x is the fitted
relative weight for the nonlinear product term, and (1–x) is the combined weight for the
linear terms. In this case, the optimum composite model selected from a single source
lineage (Figure 5C, left) produced a significant (p < 0.05, corrected) correlation (0.49)
between predicted and observed responses in the test lineage. The optimum composite
model constrained by both lineages (Figure 5C, right) was associated with an average cross-
validation correlation of 0.55 (p < 0.05, corrected). Both models were characterized by a U-
shaped medial axis template, with a surface template describing the left elbow and left limb.
The model constrained by both lineages was evenly balanced between axial tuning (a =
0.46) and surface tuning (1–a = 0.54), with a substantial nonlinear weight (x = 0.37).
Correspondingly, high response stimuli in both lineages (Figure 5D,E, top rows) had strong
similarity to both templates, while stimuli with strong similarity to only the axial template or
only the surface template elicited weak responses (bottom rows).

Figure 6 shows the distribution of linear and nonlinear weights across composite models fit
to the 66 neurons studied with two medial axis lineages. The axial tuning weight (a), which
represents how linear (additive) tuning is balanced between axial similarity and surface
similarity, is plotted on the horizontal axis. Thus, points toward the right reflect stronger
linear tuning for axial similarity, while points toward the left reflect stronger linear tuning
for surface similarity. The nonlinear tuning weight is plotted on the y axis. Thus points
toward the bottom represent mainly linear, additive tuning based on axial and/or surface
similarity. Points near the top represent mainly nonlinear tuning, i.e. responsiveness only to
combined axial and surface similiarity, expressed by the product term in the model. The
distribution of model weights in this space was broad and continuous. There were few cases
of exclusive tuning for surface shape (lower left corner) and no cases of exclusive tuning for
axial shape (lower right corner). There were many models (along the very bottom of the
plot) characterized by purely additive (linear) tuning for axial and surface shape. There were
other models (higher on the vertical axis) characterized by strong nonlinear selectivity for
composite axial/surface structure. In most cases, composite models showed significant
correlation between predicted and observed response rates. In tests of cross-lineage
prediction, 48/66 models were significant at a corrected threshold of p < 0.05 (Figure S5A).
For models constrained by both lineages, 59/66 cross-validation correlations were
significant at a threshold of p < 0.005 (Figure S5B).

For 33 of these neurons, we further explored the relationship between axial and surface
tuning with an additional test (Figures 6B–D) based on one high response medial axis
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stimulus, one intermediate response stimulus, and one low response stimulus. Medial axis
structure was preserved while surface shape was substantially altered. For some neurons,
responses to a given medial axis structure remained largely consistent across surface
alterations (Figure 6B). In contrast, most neurons showed strong sensitivity to surface
alterations (Figures 6C,D). The distribution of surface sensitivity (as measured by invariance
to surface changes; Figure 6E, horizontal axis) was continuous. Even for neurons with
substantial surface sensitivity (toward the left of the plot), tuning for medial axis structure
remained consistent (as measured by correlation between axial tuning patterns across the
different surface conditions; Figure 6E, vertical axis).

The full set of 59 significant composite models (constrained by both lineages) is depicted in
Figure 7. In each case, the model is projected onto one high response stimulus from each of
the two medial axis lineages (left and right), with the original shaded stimuli shown below.
We identified a wide array of medial axis tuning configurations, ranging from 1–12
components, and including single and double Y/T junctions. In most cases (48/59), the
surface templates were at least partially associated with the same object fragments described
by the medial axis templates. Surface configuration tuning also varied widely, and this was
substantiated by surface models identified for the 45 neurons studied with two surface
lineages (Figure S6).

It is important to note that, while these tuning templates were often complex, they did not
define the entire global structure of high response stimuli. In fact, high response stimuli
varied widely in global shape, both within and between stimulus lineages (Figs. 1, 4, 5, 7, 8).
Thus, individual IT neurons do not appear to represent global shape, at least in the domain
of novel, abstract objects studied here. Rather, novel objects must be represented by the
ensemble activity of IT neurons encoding their constituent substructures.

Specificity of tuning for 3D shape and 3D object orientation
Object shape in three dimensions is inferred from 2D image features, including shading and
2D occlusion boundary contours (Koenderink, 1984). Many IT neurons appear to encode
inferred 3D object shape (Janssen, Vogels and Orban, 2000a,b), rather than low-level image
features, since IT shape tuning remains consistent across dramatic changes in 2D shading
patterns (produced by altered lighting direction) and is strongly diminished or abolished by
removing depth cues (Yamane et al., 2008). Here, for a subset of neurons in our sample, we
tested specificity of 3D shape tuning in an additional way, by measuring responses across a
range of 3D object rotations, which preserve 3D shape while altering the 2D image.

For 29 neurons that remained isolated long enough for extended testing, we selected the
highest response stimulus identified in the adaptive sampling lineages. We identified a
roughly optimal orientation of this stimulus by measuring responses to 22 orientations
produced by 45° increment rotations around the x, y, and z axes. We used the highest
response orientation (typically the original version) as the basis for finer tests of x, y, and z
rotation tolerance across 180° ranges centered on this optimum orientation (Figure 8). The
example shown here is the same neuron presented in Figure 1. Consistent with previous
studies (Logothetis, Pauls, and Poggio, 1995; Logothetis and Pauls, 1995), responses of this
neuron were tolerant to a wide range of 3D rotations (Figure 8A,B). We quantified tolerance
as the orientation range over which responses remained significantly (t test, p < 0.05) higher
than the average response to random 3D shapes (black line, Figure 8B) generated during
adaptive sampling (typically 148 shapes). In this case the tolerance ranges were 150, 140,
and 180° for rotation about the x, y, and z axes respectively. Many neurons exhibited broad
tolerance (Figure 8C), especially for in-plane z-axis rotation (mean = 93.4°), but also for 3D
rotation about the x (61.7°) and y (70.7°) axes.
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These broad tolerance values show that tuning for 3D shape remains consistent across
substantial changes in the underlying 2D image. To quantify this, we used the composite 3D
shape model derived for each neuron in the main experiment to predict responses to the 56
stimuli in the rotation experiment. The correlation between predicted and observed
responses for this example neuron was 0.62. In contrast, correlations produced by standard
2D models based on contour shape and Gabor decomposition (Supplemental Experimental
Procedures) were substantially lower (0.19 and 0.37, respectively). The average correlation
for 3D shape models was 0.46 (compared to 0.11 for 2D contour models and 0.25 for Gabor
decomposition models; see Figure S7). These results further substantiate the specificity of IT
tuning for inferred 3D shape as opposed to 2D image features.

DISCUSSION
We used adaptive stimulus sampling (Figure 1) and metric shape analysis (Figure 2) to show
that higher-level visual cortex represents objects in terms of their medial axis structures. We
found that IT neurons are tuned for medial axis substructures comprising 1–12 components.
We also found that most IT neurons are simultaneously tuned for medial axis and surface
shape (Figure 7). In both domains, representation is fragmentary, i.e. IT neurons do not
encode global shape (Figs. 1, 4, 5, 7, 8). Our results indicate that objects are represented in
terms of constituent substructures defined by both axial and surface characteristics.

Our findings confirm longstanding theoretical predictions that the brain encodes natural
objects in terms of medial axis structure (Blum, 1973; Marr and Nishihara, 1978;
Biederman, 1987; Burbeck and Pizer, 1995; Leyton, 2001; Kimia, 2003). The theoretical
appeal of medial axis representation is abstraction of complex shapes down to a small
number of descriptive signals. Medial axis description is particularly efficient for capturing
biological shapes (Blum, 1973; Pizer, 2003), especially when adjusted for prior probabilities
through Bayesian estimation (Feldman and Singh, 2006). Medial axis components
essentially sweep out volumes along trajectories (the medial axes) (Binford, 1971), thus
recapitulating biological growth processes (Leyton, 2001). Medial axis descriptions
efficiently capture postural changes of articulated structures, making them useful for both
biological motion analysis and posture-invariant recognition (Johansson, 1973; Kovacs,
Feher and Julesz, 1998; Sebastian, Klein and Kimia, 2004; Siddiqi et al., 1999).

These theoretical considerations are buttressed by psychophysical studies demonstrating the
perceptual relevance of axial structure. Perception of both contrast and position is more
acute at axial locations within two-dimensional shapes (Kovacs and Julesz, 1994; Wang and
Burbeck, 1998). Human observers partition shapes into components defined by their axial
form (Siddiqi, Tresness and Kimia, 1996). Object discrimination performance can be
predicted in terms of medial axis structure (Siddiqi et al., 2001).

Our findings help explain a previous observation of late medial axis signals in primary
visual cortex (V1) (Lee et al., 1998). Early V1 responses to texture-defined bars (<100 ms
following stimulus onset) peaked only at the texture boundaries defining either side of the
bar. But late responses (>100 ms) showed distinct peaks at the medial axis of the bar, as far
away as 2° of visual angle from the physical boundary. Based on timing, the authors
interpreted this phenomenon as a result of feedback from IT representations of larger scale
shape. Our results demonstrate that IT is indeed a potential source for such medial axis
feedback signals.

A salient aspect of our results is simultaneous tuning for axial and surface structure. Our
previous results have demonstrated the prevalence of 3D surface shape tuning in IT
(Yamane et al., 2008). Complex shape coding in terms of surface structure has strong
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theoretical foundations (Nakayama and Shimojo, 1992; Grossberg and Howe, 2003; Cao and
Grossberg, 2005; Grossberg and Yazdanbakhsh, 2005), and surfaces dominate perceptual
organization (He and Nakayama, 1992; He and Nakayama, 1994; Nakayama, He and
Shimojo, 1995). Since any given medial axis configuration is compatible with a wide range
of surrounding surfaces (Figure 6B–D), surface information is critical for complete shape
representation. In fact, theorists have posited the existence of volumetric shape primitives,
including “geons” (Biederman, 1987) and generalized cones (Binford, 1971; Marr and
Nishihara, 1978), defined by both medial axis shape and the volume swept out along the
axis. Many of our template models embody surface information superimposed on medial
axis structures, and thus would meet this definition of volumetric primitive coding.

Combined representation of skeletal and surface structure is particularly relevant for
encoding biological shapes. The basic human form, as an example, is characterized not only
by a specific axial configuration of limbs but also by the broad convex surface curvature of
the head. Composite axial/surface tuning in high-level visual cortex could provide an
efficient, flexible basis for representing such biological shapes and encoding the many
postural configurations they can adopt. Thus, our results are potentially relevant in the
context of recent studies of anatomical and functional specialization for biological shape
representation. Anatomical segregation of visual processing for biological object categories
was originally established by fMRI studies of face and body representation in the human
brain (Kanwisher, McDermott and Chun, 1997; Downing et al. 2001). Homologous
categorical organization in old-world monkeys (Tsao et al., 2003; Moeller, Freiwald and
Tsao, 2008) has made it possible to study processing of biological shapes at the level of
individual neurons. This work has confirmed the specialization of face modules for face
representation (Tsao et al., 2006), and begun to distinguish which structural and abstract
properties of faces are processed at different levels of the face module system (Freiwald and
Tsao, 2010). In particular, neurons in the monkey “middle” face module exhibit tuning for
partial configurations of facial features, comparable to the tuning for partial configurations
of abstract surface and axial features we describe here (Freiwald, Tsao and Livingstone,
2010). These modules are so small that they require fMRI-based targeting for neural
recording experiments, so it is unlikely that we sampled extensively from them. However,
IT as a whole shows strong evidence of sensitivity to biological categories (Kiani et al.,
2007; Kriegeskorte et al., 2008), no doubt reflecting the prevalence and ecological
importance of biological shapes in our world. The representation of axial/surface
configurations we describe here could provide a structural basis for IT sensitivity to
biological categories. Of course, IT represents many other kinds of information about
objects, e.g. color (Conway, Moeller and Tsao, 2007; Koida and Komatsu, 2007; Banno et
al., 2011), that would not entail tuning for axial or surface structure.

EXPERIMENTAL PROCEDURES
Behavioral Task and Stimulus Presentation

Two head-restrained rhesus monkeys (Macaca mulatta), a 7.2-kg male and a 5.3-kg female,
were trained to maintain fixation within 1° (radius) of a 0.1° diameter spot for 4 seconds to
obtain a juice reward. Eye position was monitored with an infrared eye tracker (ISCAN). 3D
shape stimuli were rendered with shading and binocular disparity cues using openGL.
Separate left- and right-eye images were presented via mirrors to convey binocular disparity
depth cues. Binocular fusion was verified with a random dot stereogram search task. In each
trial four randomly selected stimuli were flashed one at a time for 750 ms each, with inter-
stimulus intervals of 250ms. All animal procedures were approved by the Johns Hopkins
Animal Care and Use Committee and conformed to US National Institutes of Heath and US
Department of Agriculture guidelines.
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Electrophysiological recording
The electrical activity of well-isolated single neurons was recorded with epoxy-coated
tungsten electrodes (Microprobe or FHC). We studied 111 neurons from central/anterior
lower bank of the superior temporal sulcus and lateral convexity of the inferior temporal
gyrus (13–19 mm anterior to the interaural line). IT cortex was identified on the basis of
structural magnetic resonance images and the sequence of sulci and response characteristics
observed while lowering the electrode.

Stimulus construction and morphing
Medial axis stimuli were constructed by randomly connecting 2-8 axial components end-to-
end or end-to-side. Each component had a random length, curvature, and radius profile. The
radius profile was defined by three random radius values at both ends and the midpoint of
the medial axis. A quadratic function was used to interpolate a smooth profile between these
radius values along the medial axis. Smooth surface junctions between components were
created by interpolation and Gaussian smoothing. During the adaptive stimulus procedure,
medial axis stimuli were morphed by randomly adding, subtracting, or replacing axial
components, and by changing length, orientation, curvature, and radius profiles of axial
components (See Figure S1A).

Each surface stimulus was constructed as an ellipsoidal, polar grid of Non-uniform rational
B-splines (NURBS). The latitudinal cross-sections of this grid were assigned random radii,
orientations and positions, with constraints on overall size and against self-intersection
(Yamane et al., 2008). Local modulations of surface amplitude were defined by sweeping
Gaussian profiles along random Bezier curves defined on the surface. During the adaptive
stimulus procedure, surface stimuli were morphed by randomly altering the radii,
orientations, and positions of the latitudinal cross-sections defining the ellipsoidal mesh or
the Bezier curves and Gaussian profiles defining surface amplitude modulations (see Figure
S1B).

Adaptive stimulus procedure
Each neuron was tested with independent lineages of medial axis and surface stimuli (see
Figure 1). The first generation of each lineage comprised 20 randomly constructed stimuli.
Subsequent generations in each lineage included randomly morphed descendants of ancestor
stimuli randomly selected from previous generations, 4 from the 90%–100% of maximum
response range, 3 from the 70–90% range, 3 from the 50–70% range, 3 from the 30–50%
range, and 3 from 0-30% range. Each subsequent generation also included 4 new, randomly
constructed stimuli. This distribution ensured that the adaptive procedure sampled across a
wide domain including the peak, shoulders, and boundaries of the neuron’s tuning range (see
Figure S1C).

After 5 generations of medial axis and surface stimuli (100 stimuli in each lineage), a
Wilcoxon rank sum test applied to the 10 highest responses in each domain was used to
determine which produced higher responses. For whichever domain produced higher
responses, the original lineage was continued for 5 more generations and a second lineage in
the same domain was initiated and tested through 5–10 generations. This protocol allowed
us to compare responses across domains (based on the first 5 generations) but also provided
a second, independent lineage to constrain and cross-validate tuning models in the higher-
response domain. The total number of stimuli used to test each neuron ranged from 400–
500, comprising 128–148 randomly generated stimuli and 272–352 adaptively modified
stimuli.
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Medial axis template models
For each candidate medial axis template, geometric similarity to a given shape was based on
the closest matching substructure within that shape. This matching substructure was required
to have the same axial topology (pattern of connected components). Most stimuli had one of
four topologies: linear, Y/T-junction, X-junction, or two Y/T-junctions. The candidate
template and the potentially matching substructure were densely sampled at points along
each component. Points from the template and the matching substructure were compared for
similarity of 3D position (relative to object center) and 3D orientation. The final similarity
score was based on the product of these differences, averaged across points (see
Supplemental Experimental Procedures and Figure S2).

Surface template models
We decomposed all shape stimuli into surface fragments with approximately constant
surface curvatures and surface normal orientations (Yamane et al., 2008). Surface template
models were configurations of 1-6 surface fragments. For a given shape, we measured
similarity of the closest matching surface fragment configuration within that shape, based on
3D positions, surface normal orientations, and principal surface curvatures of the component
fragments (see Supplemental Experimental Procedures and Figure S3). We tested all
possible surface template models derived from the 30 highest response stimuli and selected
the model with the highest correlation between similarity and neural response across all
stimuli. In these analyses, as in our previous study (Yamane et al., 2008), highest
correlations were obtained with 2-fragment models on average, and the results reported here
are based on these models.

Composite template models
Composite models were generated by testing all combinations of the 10 highest correlation
medial axis templates and the 10 highest correlation surface templates, and in each case
fitting the following model by maximizing correlation between CompositeSimilarity and
response rate, using the Matlab function lsqcurvefit:

where Sm is the axial similarity score for a given stimulus, Ss is the surface similarity score,
a is the fitted relative weight for the linear axial term, (1–a) is the weight for the surface
term, x is the fitted relative weight for the nonlinear product term, and (1–x) is the combined
weight for the linear terms. The values of a and x were constrained to a range of 0–1.

Statistical Verification of model fits
To measure cross-prediction of composite models between lineages, for each source lineage
we examined all 100 combinations of the 10 axial templates and 10 surface templates
showing highest predictive power in the source lineage. Each of these 100 combinations was
tested by measuring correlation between predicted and observed responses in the
independent test lineage. Given two source lineages, this meant a total of 200 candidate
models was tested. A significance threshold of p < 0.05 corrected for 200 comparisons
required an actual threshold of p < 0.00025 (Figure S5A).

For the models generated from the overall dataset comprising both lineages, we used a two-
stage cross validation procedure at a significance threshold of p < 0.005 (Figure S5B). The
higher significance threshold was chosen because the more inclusive model source dataset
could generate more accurate models, and because it is closer to the strict corrected
threshold (p < 0.00025) used in the cross-lineage prediction test described above. In the
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“outer loop” of this procedure, we held out a random 20% of stimuli (from the combined,
two-lineage dataset) for final model testing. This was done five times, as is standard in 5-
fold, 20% holdout cross-validation. In the “inner loop” of this procedure, we again held out
20%, of the remaining stimuli, for testing the response prediction performance of candidate
model templates (which were drawn only from stimuli remaining after both holdouts). This
inner loop was also iterated five times (within each iteration of the outer loop). We selected
the template with best response prediction performance on inner loop holdout stimuli, then
measured the performance of this template model on the outer loop holdout stimuli. Thus,
both model selection and final model testing were based on independent data. The values
reported for examples in main text and shown in the Figure S5B distribution are averages
across the five outer loop results for each neuron. In applying this procedure to the
composite model, each inner loop test of a candidate model required fitting two variables to
define the relative weights of the axial, surface, and product terms. Since this fitting was
based solely on the inner loop holdout stimuli, the final test on the outer loop holdout stimuli
was not subject to over-fitting.

Response invariance and axial tuning consistency
As a measure of response invariance across surface shape changes (Figure 6E, horizontal
axis), we first normalized and sorted responses across the 7 stimulus conditions, and then
calculated:

where Ri is the normalized response to the ith stimulus and Ki is the rank order (from 1 to 7)
of the ith stimulus. Inv was normalized from a range of 1–140 to a range of 0–1. Larger
values indicate higher the response invariance across the surface shape changes.

Our measure of axial tuning consistency (Figure 6E, vertical axis) was the fraction of
variance explained by the first component of a singular value decomposition of the 3×7
response matrix (Figure 6B).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• First demonstration of medial axis shape coding in ventral pathway

• IT neurons represent configurations of 1–12 axial components

• Most IT neurons represent both medial axis and surface shape information
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Figure 1.
Adaptive shape sampling example. See text for details. (A) 1st, 3rd, and 5th generations of a
medial axis lineage (left, M1.1, M1.3, M1.5) and a surface shape lineage (right, S1.1, S1.3,
S1.5). Stimuli are ordered within each generation by average response strength. Average
response rate is indicated by background color (see scale bar). (B) 6th, 8th, and 10th

generations of the original medial axis lineage (left, M1.6, M1.8, M1.10) and 1st, 5th, and
10th generations of a second, independent medial axis lineage (right, M2.1, M2.5, M2.10).
(C) Partial family trees exemplifying shape evolution within the first (left) and second
(right) medial axis lineages.
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Figure 2.
Medial axis template model example (for Figure 1 neuron). (A) Optimum template, in this
case from second lineage (outline, upper right). The source stimulus is shown (upper left)
along with its complete set of substructures. (B) Highest similarity substructures (colored
outlines) for three example high response stimuli (top row) and three low response stimuli
(bottom row) from the same (second) lineage. Average observed response rates are indicated
by inset numbers, template similarity values are indicated by color (see scale bar). (C)
Highest similarity substructures for high response (top row) and low response (bottom row)
stimuli from the first lineage. (D–F) Optimum template based on both lineages, presented as
in A–C.

Hung et al. Page 17

Neuron. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Response strength comparison for medial axis and surface stimuli. (A) Scatter plot of mean
response across top ten stimuli in each domain (n=111). (B) Histogram of Wilcoxon rank
sum statistics testing whether responses to top ten medial axis stimuli were higher than
responses to top ten surface stimuli. Filled bars indicate significantly (p < 0.05) higher
medial axis responses (right, n = 40) or higher surface responses (left, n = 29).
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Figure 4.
Surface tuning example. (A, B) Selected generations from two medial axis lineages and one
surface lineage. Details as in Figure 1. (C) Optimum surface template model (based on
correlation with response rates in both lineages), projected onto the template source stimulus
(left) and schematized (right) as a combination of two surface fragment icons (green, cyan)
positioned relative to object center (cross). The acute convex point (green) is enlarged for
visibility. (D) Surface template similarity (see scale bar) for three example high response
stimuli (top row) and three low response stimuli (bottom row) from the first medial axis
lineage. (E) Surface template similarity for high and low response stimuli from the second
medial axis lineage.
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Figure 5.
Combined medial axis / surface tuning example. (A, B) Selected generations from two
medial axis lineages and one surface lineage. Details as in Figure 1. (C) Optimum combined
templates based on a single lineage (left) and based on both lineages (right). In each case,
the black outline represents the medial axis template and the green and cyan surfaces
represent the surface template. (D) Template similarity values (see scale bars) for example
high (top row) and low (bottom row) response stimuli from the first medial axis lineage. (E)
Template similarity values for example stimuli from the second medial axis lineage.
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Figure 6.
(A) Distribution of axial weights (horizontal axis) and nonlinear weights (vertical axis) in
the composite medial axis / surface tuning models. (B–D) Example tests of axial tuning
consistency. These tests were based on one high (top rows), one medium (middle rows), and
one low (bottom rows) response stimulus drawn from the adaptive tests. The original stimuli
(left column) were morphed with six different radius profiles (columns 2–7) to alter surface
shape while maintaining medial axis shape. (E) Scatter plot of response invariance
(horizontal axis) vs. axial tuning consistency (vertical axis). Our index of invariance is
explained in Experimental Procedures. Consistency was defined as the fraction of variance
explained by the first component of a singular value decomposition model, which measures
the separability of axial and surface tuning.
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Figure 7.
Composite medial axis / surface tuning models. Models constrained by both lineages are
shown for 59/66 neurons with significant cross-validation (r test, p < 0.005). For each
neuron, the optimum model is projected onto a high response stimulus from the first medial
axis lineage (left column) and a high response stimulus from the second lineage (right
column). The model projections are shown in the top row, and the original shaded stimuli
are shown in the bottom row. Medial axis and surface template similarity values are
indicated by color (see scale bars). Models are arranged by decreasing medial axis weight
from upper left to lower right.
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Figure 8.
3D rotation test. (A) Example results, for the Figure 1 neuron. Average response level (see
scale bar) was measured for versions of the highest response stimulus from the adaptive
sampling procedure rotated across a 180° range in 10° increments around the x (top), y
(middle), and z (bottom) axes. (B) Same data as in (A), for rotation around the x (red), y
(green), and z (blue) axes (error bars indicate +/- s.e.m.), compared to average response
across all stimuli in the main experiment (black, dashed lines indicate +/- s.e.m.). (C)
Distribution of tolerances for rotation around the x (top), y (middle), and z (bottom) axes.
Tolerance was defined as the width in degrees of the range over which responses to the
highest response stimulus remained significantly (t test, p < 0.05) greater than the average
response to random stimuli tested as part of the adaptive sampling experiment.
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